Adventures in Interferometry

Brian Kloppenborg

University of Denver

May 19, 2008

Brian Kloppenborg Adventures in Interferometry

・ロト ・回ト ・ヨト

- < ≣ →

æ

Outline

Modern Interferometry

Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Data Analysis

Model Selection Analysis Methods Results

Plans for the Future

Acknowledgments

< 177 ▶

글 🕨 🔺 글

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Simple Eclipsing Binary

Theoretically, we can describe a star by five quantities: Mass, Radius, Temperature, Chemical Composition, Time (age).

Image: A matrix

∃ >

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Simple Eclipsing Binary

Theoretically, we can describe a star by five quantities: Mass, Radius, Temperature, Chemical Composition, Time (age).

Figure: The (ideal) light curve of an eclipsing binary (Ostlie, 1996)

< 1⁻

Data Analysis Plans for the Future Acknowledgments

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The Eclipse happens once every 27 years
- The Eclipse lasts for two years
- The Spectrum looks like a 15 M_{\odot} F-Super giant star.
- ▶ No Significant evidence for the companion star.
- So, what is causing the eclipse?

イロト イポト イヨト イヨト

Data Analysis Plans for the Future Acknowledgments

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The Eclipse happens once every 27 years
- The Eclipse lasts for two years
- The Spectrum looks like a 15 M_{\odot} F-Super giant star.
- ▶ No Significant evidence for the companion star.
- So, what is causing the eclipse?

Data Analysis Plans for the Future Acknowledgments

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The Eclipse happens once every 27 years
- The Eclipse lasts for two years
- The Spectrum looks like a 15 M_{\odot} F-Super giant star.
- No Significant evidence for the companion star.
- So, what is causing the eclipse?

Data Analysis Plans for the Future Acknowledgments

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The Eclipse happens once every 27 years
- The Eclipse lasts for two years
- The Spectrum looks like a 15 M_{\odot} F-Super giant star.
- ► No Significant evidence for the companion star.
- So, what is causing the eclipse?

Data Analysis Plans for the Future Acknowledgments

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The Eclipse happens once every 27 years
- The Eclipse lasts for two years
- The Spectrum looks like a 15 M_{\odot} F-Super giant star.
- ► No Significant evidence for the companion star.
- So, what is causing the eclipse?

Data Analysis Plans for the Future Acknowledgments

Motivation

Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Current Model of ϵ Aurigae

Figure: Model of Epsilon Aurigae System (NASA, 1985)

イロト イヨト イヨト

→ ∃ →

Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Astronomical Nomenclature

Angular Measurements

- 1 Radian = $180/\pi \simeq 57.3$ degrees
- 1 Degree = 60 arc-minutes = 60^2 arc-seconds
- 1 arc-second $\approx 5 * 10^{-6}$ rad = 5 micro-radians
- 1 milli arc-second \approx 5 nano-radians

Astronomers also speak of the angular resolution of a telescope. Often this is defined by the Rayleigh Diffraction Criterion:

$$\bullet$$
 $\theta = 1.22 \frac{\lambda}{D}$

where λ is the wavelength and D is the diameter of the telescope.

Data Analysis Plans for the Future Acknowledgments Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Why Build an Interferometer?

Figure: Betelgeuse (α Orionis), has an angular diameter of 223 nrad (46 mas).

イロト イヨト イヨト イヨト

Modern Interferometry Data Analysis

Plans for the Future Acknowledgments Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Why Build an Interferometer?

Figure: Betelgeuse (α Orionis), has an angular diameter of 223 nrad (46 mas).

∃ >

Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Why Build an Interferometer?

Figure: Betelgeuse (α Orionis), has an angular diameter of 223 nrad (46 mas).

 The Largest Telescopes Lack Sufficient Resolution

- Keck Telescopes: 10 m
 268 nrad (55 mas)
- Large Mirrored Telescopes are expensive

Data Analysis Plans for the Future Acknowledgments Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

The Michelson Interferometer

Figure: Schematic Drawings of a Michelson Interferometer (Hecht, 2002)

Data Analysis Plans for the Future Acknowledgments Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Fringes

Figure: Fringes as seen by an Interferometer (Hecht, 2002) Visibility Squared:

$$V^{2} = \left(\frac{I_{max} - I_{min}}{I_{max} + I_{min}}\right)^{2}$$

-

Brian Kloppenborg Adventures in Interferometry

Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

Palomar Testbed Interferometer

Figure: Aerial View of PTI and the 200" Palomar Telescope (Gerald van Belle)

- PTI Operated by the Michelson Science Center on behalf of CalTech and NASA-JPL
- Maximum Baseline, 110 meters
- Resolution 8.1 10.5 nrads (1.67 - 2.18 mas)

・ロト ・回ト ・ヨト

Adventures in Interferometry

Data Analysis Plans for the Future Acknowledgments Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

PTI Schematic Drawing

Figure: Schematic Drawing of PTI (Colavita, 1999)

イロト イヨト イヨト イヨト

Data Analysis Plans for the Future Acknowledgments Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

PTI Schematic Drawing

Figure: Schematic Drawing of PTI (Colavita, 1999)

・ロト ・回ト ・ヨト

→ ∃ →

Data Analysis Plans for the Future Acknowledgments Motivation Nomenclature Why Use Interferometry? Palomar Testbed Interferometer

PTI Schematic Drawing

Figure: Schematic Drawing of PTI (Colavita, 1999)

・ロト ・回ト ・ヨト

< ∃⇒

Model Selection **Analysis Methods** Results

Model Selection

Figure: Disk Models (Meisner, J.) Brian Kloppenborg

Adventures in Interferometry

A B +
 A B +
 A

- < ≣ →

3

< ∃⇒

æ

Model Selection Analysis Methods Results

Model Selection

イロト イヨト イヨト イヨト

æ

Figure: Disk Models (Meisner, J.)

Brian Kloppenborg

Adventures in Interferometry

Model Selection Analysis Methods Results

Model Selection

- Uniform Disk
- Limb-Darkened
- Others

- Uniform Disk with a hole
- Ellipse
- Gaussian (with or without a hole)

<ロ> (四) (四) (三) (三)

æ

- Binary Star (with or without a transit)
- ► Central "Hotspot"

Model Selection Analysis Methods Results

Uniform Disk

Visibility squared readings from the interferometer are matched to an angle using a model. In our case, we considered the uniform disk model:

$$V^{2}(\theta, B, \lambda) = \frac{\left(2 * J_{1}\left(\pi \theta B / \lambda\right)\right)^{2}}{\left(\pi \theta B / \lambda\right)}$$
(1)

イロト イポト イヨト イヨト

where B is the projected baseline and $J_1(x)$ is a Bessel function of the first kind.

Model Selection Analysis Methods Results

Bessel Function Approximation

Unfortunately, my version of Excel does not have a Bessel function built-in, so I wrote one. Using Arfken's definition:

$$J_{\nu}(x) = \sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!(s+\nu)!} \left(\frac{x}{2}\right)^{\nu+2s}$$
(2)

I wrote a macro that takes the first n-terms of the expansion:

$$J_{\nu}(n,x) = \sum_{s=0}^{n} \frac{(-1)^{s}}{s!(s+\nu)!} \left(\frac{x}{2}\right)^{\nu+2s}$$
(3)

イロト イポト イヨト イヨト

I elected to use the first seven terms from the expansion so that the maximum error that could be contributed by the next term in the series was below 5×10^{-9} .

Model Selection Analysis Methods Results

The Lookup Table

Solving for the angular diameter, θ , in the visibility squared equation is not easily done:

$$\frac{\left(2*J_1\left(\pi\theta B/\lambda\right)\right)^2}{\left(\pi\theta B/\lambda\right)}=V^2$$

Therefore I elected to create a lookup table that takes values of $(\pi\theta B/\lambda)$ between ≈ 0.45 and ≈ 2.55 in 3.2×10^{-5} increments.

- ► Produces V² values between 0.14 and 0.95 in 2 × 10⁻⁵ increments.
- Consists of 65534 rows

イロト イヨト イヨト イヨト

Model Selection Analysis Methods Results

Obtaining Results

The lookup table facilitates our analysis by allowing us to match the V^2 values from PTI with a corresponding value of $(\pi \theta B/\lambda)$. After that, it's simply algebra:

$$\theta = \frac{\lambda X}{\pi B} \tag{4}$$

イロト イポト イヨト イヨト

Where X is the (numerical) value for $(\pi \theta B/\lambda)$ in the lookup table.

Model Selection Analysis Methods Results

Results

UTDate JD-2450000	Baseline [m]	UDD [mas]	Error [mas]
2007Oct19 4393	NS	2.18	0.06
2007Oct20 4394	NS	2.02	0.13
2007Oct21 4395	NS	2.52	0.08
2007Dec23 4458	NS	2.36	0.16
2007Dec24 4459	NS	2.24	0.14
Archival Data			
1997Oct22 0744	NS	2.35	0.18
1997Nov09 0762	NS	2.33	0.15
1998Nov07 1125	NS	2.09	0.14
1998Nov25 1143	NS	2.66	0.16

Table: Angular Diameters obtained from Wide-Band Visibility mode data using the uniform disk model

イロト イヨト イヨト イヨト

æ

Interferometric Image Synthesis

Interferometric Image Synthesis

Interferometric Image Synthesis

Interferometric Image Synthesis

Interferometric Image Synthesis

Radio Astronomers can build images from interferometric data, can we do that with near-optical data too?

Image: Image:

Future Observations

When we go back, what will we look for?

- ► e Aurigae exhibits large changes in brightness over very short time periods. Is this a form of pulsation? Can it be detected by PTI?
- Is this star really a F-supergiant? Could it be a Post Asymptotic Giant Branch Star (AGB)?
- More Pre-eclipse Data. How does the system change before and after eclipse?
- How does the angular diameter change as the disk passes? Does the disk divide the star in two?

イロト イポト イラト イラト

Future Observations

When we go back, what will we look for?

- ► e Aurigae exhibits large changes in brightness over very short time periods. Is this a form of pulsation? Can it be detected by PTI?
- Is this star really a F-supergiant? Could it be a Post Asymptotic Giant Branch Star (AGB)?
- More Pre-eclipse Data. How does the system change before and after eclipse?
- How does the angular diameter change as the disk passes? Does the disk divide the star in two?

イロト イポト イヨト イヨト

Future Observations

When we go back, what will we look for?

- ► e Aurigae exhibits large changes in brightness over very short time periods. Is this a form of pulsation? Can it be detected by PTI?
- Is this star really a F-supergiant? Could it be a Post Asymptotic Giant Branch Star (AGB)?
- More Pre-eclipse Data. How does the system change before and after eclipse?
- How does the angular diameter change as the disk passes? Does the disk divide the star in two?

イロト イポト イヨト イヨト

Future Observations

When we go back, what will we look for?

- ► e Aurigae exhibits large changes in brightness over very short time periods. Is this a form of pulsation? Can it be detected by PTI?
- Is this star really a F-supergiant? Could it be a Post Asymptotic Giant Branch Star (AGB)?
- More Pre-eclipse Data. How does the system change before and after eclipse?
- How does the angular diameter change as the disk passes? Does the disk divide the star in two?

Acknowledgments

- Robert Stencel (1)
- Daniel Clemens (2), Michelle Creech-Eakman (3), Alexa Hart (1), Jeffery Hopkins (4), Dale Mais (5), Kevin Rykowski (6), Lothar Schanne (7)
- Jeffrey Meisner (8)

 University of Denver 2. Boston University 3. New Mexico Tech
 Hopkins-Phoenix Observatory 5. Palomar Community College 6. Michelson Science Center 7. Schanne Volklinger Observatory 8. Linden Observatory

イロト イポト イヨト イヨト