Challenges Related to Interferometric Imaging

Brian Kloppenborg

May 24, 2010

Brian Kloppenborg Challenges Related to Interferometric Imaging

Outline

Solving a Long Standing Problem in Astrophysics Introduction to image reconstruction New Insights

Outline

Solving a Long Standing Problem in Astrophysics
 Epsilon Aurigae

2 Introduction to image reconstruction

- What is an interferometer?
- Interferometric Observables
- UV Coverage
- Image Reconstruction

3 New Insights

- Simple Parameters
- Orbital Parameters
- Velocities and Mass Ratios

・ 同 ト ・ ヨ ト ・ ヨ ト

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

Epsilon Aurigae

• The eclipse lasts for 15 months

イロト イヨト イヨト イヨト

æ

Epsilon Aurigae

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The eclipse lasts for 15 months
- The eclipse happens once every 27.1 year

Epsilon Aurigae

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The eclipse lasts for 15 months
- The eclipse happens once every 27.1 year
- The spectrum looks like a 15 M_{\odot} F-Super giant star.

Epsilon Aurigae

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The eclipse lasts for 15 months
- The eclipse happens once every 27.1 year
- The spectrum looks like a 15 M_{\odot} F-Super giant star.
- Until Recently, no significant evidence for the companion star.

Epsilon Aurigae

ϵ Aurigae

The Light Curve of ϵ Aurigae suggests it is an eclipsing binary, except:

- The eclipse lasts for 15 months
- The eclipse happens once every 27.1 year
- The spectrum looks like a 15 M_☉ F-Super giant star.
- Until Recently, no significant evidence for the companion star.
- So, what is causing the eclipse?

Epsilon Aurigae

 Largest star in the universe (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)

イロン イヨン イヨン イヨン

æ

Image Credit: Kuiper et. al. 1937

Epsilon Aurigae

- Largest star in the universe (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)
- A disk (Huang, 1965)

イロン イヨン イヨン イヨン

æ

Image Credit: Huang, 1965

Epsilon Aurigae

- Largest star in the universe (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)
- A disk (Huang, 1965)
- A black hole (Cameron, 1971)

イロン イヨン イヨン イヨン

Image Credit: Dan Weeks

Epsilon Aurigae

- Largest star in the universe (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)
- A disk (Huang, 1965)
- A black hole (Cameron, 1971)
- High mass system (review: Webbink, 1985)

イロト イヨト イヨト イヨト

æ

Image Credit: Carroll, S. et. al 1991

Epsilon Aurigae

- Largest star in the universe (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)
- A disk (Huang, 1965)
- A black hole (Cameron, 1971)
- High mass system (review: Webbink, 1985)
- Binary or a trinary? (Lissauer, 1984)

Image Credit: M. Carroll and Robert Stencel 2008

イロン 不同と 不同と 不同と

Epsilon Aurigae

- Largest star in the universe (Kuiper, G. P. and Struve, O. and Strömgren, B.; 1937)
- A disk (Huang, 1965)
- A black hole (Cameron, 1971)
- High mass system (review: Webbink, 1985)
- Binary or a trinary?
- Low mass system

(Webbink, 1985)

イロト イヨト イヨト イヨト

Image Credit: Brian Thieme

Scientific Relavance

- Simple Binary Stars
 - Period
 - Luminosity
 - Radii
 - Temperatures
- Something new or interesting?
 - Massive \implies luminous, where is the companion?
 - Large Obscuring Object: Dark Matter, black hole?
 - New Evolutionary state for stars or PN?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Epsilon Aurigae

Why do we need interferometry?

- Previous observations give models, no confirmation.
- Biggest telescopes lack sufficient resolution:
 - Keck Telescopes: 10 m, 55 mas (268 nrad)
- Need direct observations to continue developing theory.

What is an interferometer? Interferometric Observables UV Coverage Image Reconstruction

An Interferometer: CHARA

Mt. Wilson Today, Credit: Georgia State University

・ロン ・回 と ・ ヨン ・ モン

æ

What is an interferometer? Interferometric Observables UV Coverage Image Reconstruction

Visibility

Fringes as seen by an Interferometer (Hecht, 2002)

$$\mathcal{V} = rac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Brian Kloppenborg Challenges Related to Interferometric Imaging

Э

What is an interferometer? Interferometric Observables UV Coverage Image Reconstruction

Closure Phase

Image Credit: John D. Monnier, 2007

$$\Phi_{ijk} = \phi_{ij} + (\phi_{jk} + \phi_{atm}) \\ + (\phi_{ki} - \phi_{atm}) \\ = \phi_{ij} + \phi_{jk} + \phi_{ki}$$

・ロト ・回ト ・ヨト ・ヨト

Э

UV Coverage

What is an interferometer? Interferometric Observables UV Coverage Image Reconstruction

Epsilon Aurigae Visibility Data (CHARA-MIRC) Squared-Visibility 1.000 UT2009Nov03 UT2009Dec03 200 U coordinate (10^e radians⁻¹) 100 0.100 0.010 -100 -200 0.001 200 -200 200 100 -200 100 -100-100V coordinate (10⁶ radians⁻¹) V coordinate (10⁶ radians⁻¹)

Image Credit: Kloppenborg et. al. 2010

Outline Outline What is an interferometer? Solving a Long Standing Problem in Astrophysics Introduction to image reconstruction New Insights Image Reconstruction

The Premise

A minimization problem:

$$C' = \chi^2 - \alpha S$$

・ロト ・回ト ・ヨト ・ヨト

Э

 Outline
 What is an interferometer?

 Solving a Long Standing Problem in Astrophysics
 Interdecementic Observables

 Introduction to image reconstruction
 New Insights

The Engine

$$V_{k} = \sum_{i}^{x} \sum_{j}^{y} I_{ij} e^{2\pi i p u v_{u}(k) + 2\pi j p u v_{v}(k)}$$

$$P_{ij} = (V_{ij})^{2}$$

$$B_{ijk} = V_{ij} V_{jk} V_{ki} e^{i(\phi_{ij} + \phi_{jk} + \phi_{ki})}$$

996

Outline Solving a Long Standing Problem in Astrophysics Introduction to image reconstruction New Insights What is an interferometer? Interferometric Observables UV Coverage Image Reconstruction

The Engine

$$\chi^2 = \sum_{i}^{M_{data}} \frac{(D_i - D'_i)^2}{D_{err\,i}}$$

900

The Engine

$$S_{ij} = I_{ij} - M_{ij} - I_{ij} \ln \left(rac{I_{ij}}{M_{ij}}
ight)$$

900

The Engine

$$C' = \chi^2 - \alpha S$$

うくで

The Engine

Э

The Engine

Э

The Engine

Brian Kloppenborg Challenges Related to Interferometric Imaging

э

Simple Parameters Orbital Parameters Velocities and Mass Ratios

New Knowledge

Brian Kloppenborg¹, Robert Stencel¹, John D. Monnier², Gail Schaefer³, Ming Zhao⁴, Fabien Baron², Hal McAlister³, Theo ten Brummelaar³, Xiao Che², Chris Farrington³, Ettore Pedretti³, P. J. Sallave-Goldfinger³, Judit Sturman⁴, Lazlo Sturman³, Nathalie Thureau³, Nils Turme² & Sean M. Carroll⁶

Simple Parameters Orbital Parameters Velocities and Mass Ratios

Simple Parameters

Star Diameter:	1.51 ± 0.02	AU
Disk Semi-Major Axis:	3.81 ± 0.01	AU
Disk Semi-Minor Axis:	0.38 ± 0.01	AU
Minimum Disk Inclination:	84.30 ± 0.15	deg.
Maximum Disk Thickness:	0.76 ± 0.02	AU
Disk Tilt Position Angle:	119.80 ± 0.74	deg.
Disk Volume:	1.16 ± 0.03	1E35 m ³
Disk Mass:	2.22 ± 1.57	1E-7 M ₀

・ロト ・日本 ・モート ・モート

э

Simple Parameters Orbital Parameters Velocities and Mass Ratios

Orbital Parameters

Disk Orbit Position Angle:	296.82 ± 6.85	deg.
Disk Above Orbit Tilt:	2.98 ± 6.89	deg.
Disk Motion:	0.43 ± 0.08	AU
Disk Relative Speed:	25.10 ± 4.65	km/s

イロン イヨン イヨン イヨン

æ

Simple Parameters Orbital Parameters Velocities and Mass Ratios

Velocities and Mass Ratios

						Orbit -	
	20						
	10						
(seu	0						
S-N	0						
	-10		/				
	-10						
	-20						
		20	1	0	0 -1	0 -2	10
	E-W (mas)						

・ロン ・回 と ・ヨン ・ヨン

Э

	Ours	Literature	
Disk Speed:	9.66 ± 4.67		(km/sec)
Mass Ratio (Disk + B5V : F-Star):	0.62 ± 0.12		
Mass Ratio (F-Star : Disk + B5V):	1.63 ± 0.30		
F-Star Mass:	3.63 ± 0.68	3.15 ± 0.25	M _☉
Mass Function:	2.26 ± 0.32	2.51 ± 0.12	0

* Literature values from Stefanik et. al. 2010 and Hoard et. al. 2010.

Simple Parameters Orbital Parameters Velocities and Mass Ratios

Acknowledgements

- Dr. Robert Stencel
- Bequest of William Herschel Womble
- CHARA Collaborators
- Dr. Fabien Baron

イロン イヨン イヨン イヨン

æ

Simple Parameters Orbital Parameters Velocities and Mass Ratios

Data Gradient

$$dV_{k} = \sum_{k}^{N_{pow}} 4 \left(D_{err\,k} \right)^{2} \left(M_{k} - D_{k} \right) Re \left(V_{k}^{*} \left(e^{2\pi i p \, uv_{u}(k) + 2\pi j p \, uv_{v}(k)} - V_{k} \right) \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simple Parameters Orbital Parameters Velocities and Mass Ratios

Entropy Gradient

$$dS_{ij} = -ln\left(rac{I_{ij}}{M_{ij}}
ight)$$

イロン イボン イヨン イヨン 三日