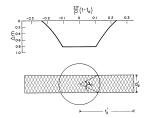
Interferometric Imaging of Epsilon Aurigae

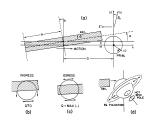
Brian Kloppenborg

University of Denver

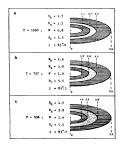
Tuesday, Jan. 11, 2011



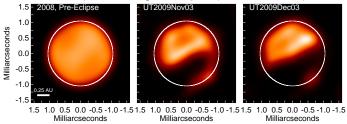
What we knew about the eclipsing object Interferometric Images Results and Next Steps


"There is little prospect of resolving this binary by any existing technique since the maximum separation, predicted for 1989, is only 0.02, and the companion must be very faint."

- Van de Kamp, 1981


Our understanding

Dark Obscuring Rectangle. Huang, 1965


Tilted Rotating Disk. Kemp et. al., 1986

Inclined Disk with Rings. Ferluga, 1990

Ingress Images

Epsilon Aurigae Eclipse (CHARA-MIRC)

Ingress Imaging of epsilon Aurigae. Kloppenborg et. al. 2010

Potential Artifacts

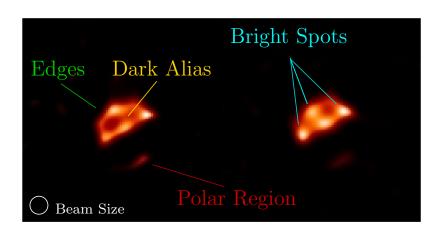
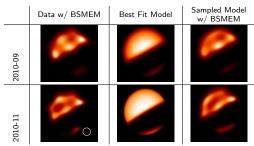



Figure: Possible artifacts in the images

Artifact Discussion

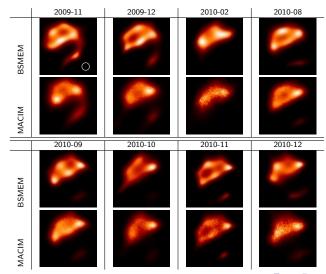
	Data w/ BSMEM	Best Fit Model	Sampled Model w/ BSMEM	
2010-09	P			
2010-11	0		0	

Artifact Discussion

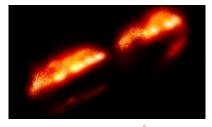
Likely Artifacts:

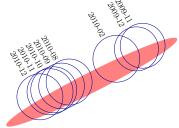
- Bright Spots along equator
- Bright spot at North Pole
- Dark alias in northern hemisphere
- Scalloped Edge of disk

Not Artifacts:


Southern Pole

Undecided


 Straight Edges on F-star



All Eight Epochs of Eclipse

Silhouette of the Disk

Results and Next Steps

		F-Star		Disk				Fit
Date	MJD	LDD (mas)	LDR* (R_{\odot})	Semi-Minor	Axis	Full Thickness* (AU)	Smoothing Coefficient	Reduced χ^2
				(mas)				
2009-11	55138	2.304	154.8		0.417	0.522	0.221	2.38
2009-12	55168	2.257	151.7		0.489	0.612	0.240	7.59
2010-02	55243	2.398	161.1		0.550	0.688	0.240	2.39
2010-08	55430	2.353	158.1		0.536	0.670	0.270	9.21
2010-09	55462	2.340	157.2		0.508	0.635	0.232	3.60
2010-10	55492	2.358	158.4		0.523	0.654	0.240	3.22
2010-11	55504	2.354	158.2		0.570	0.713	0.233	5.28
2010-12	55543	2.364	158.8		0.562	0.703	0.403	4.67

^{*} Assuming the nominal Hipparcos distance of 625 pc to the system.

Next Steps:

- Determine disk parameters via. multi-epoch model fitting.
- Full orbital solution (x,y,z)
- Definition of photometric contact times need to be reconsidered

For more information see my poster, 257.03, today.

Any Questions?

