

Talk Outline

- Background Material
 - Star naming conventions
 - Single star evolution
 - Binary Star Evolution
- Epsilon Auriage
 - The discovery and history
 - Current understanding, competing theories
 - New developments from research

Star Naming Conventions

- Stellar Naming Conventions
 - The sky is divided into regions called constellations.
 - Most bright stars have Arabic names. Few (< 20) are named after people
 - Some bright stars also have a Bayer designation.
 Format: α,β,γ,δ,ε, ... followed by constellation name.
 - Now with brighter telescopes the star names are often numerical or somehow coordinate based.
- Stars often have many names:

 Identifiers (46):

LF 7 +43 70

GC 6123

***	CONT. COTO	T.C. TI. +43, 83	CYCYN TOTO
<u>V*</u> eps Aur	GCRV 2970	<u>LS</u> V +43 23	<u>SKY#</u> 7879
👲 eps Aur	GEN# +1.00031964J	2MASS J05015812+4349241	TD1 3824
<u>*</u> 7 Aur	<u>GSC</u> 02907-01275	N30 1068	TYC 2907-1275-1
<u>ADS</u> 3605 A	<u>HD</u> 31964	PLX 1122	<u>UBV</u> 4807
<u>AG</u> +43 552	HIC 23416	PMC 90-93 131	<u>UBV</u> M 10528
<u>ALS</u> 8131	<u>HIP</u> 23416	PPM 47627	<u>UCAC3</u> 268-74264
<u>BD</u> +43 1166	<u>HR</u> 1605	RAFGL 670S	uvby98 100031964 ABV
CCDM J05020+4350A	<u>IDS</u> 04548+4341 A	RAFGL 670	WDS J05020+4349A
<u>CSI</u> +43 1166 1	<u>IRAS</u> 04583+4345	<u>ROT</u> 705	[KW97] 20-37
EM* CDS 456	<u>IRC</u> +40109	<u>SA0</u> 39955	<u>AAVS0</u> 0454+43
<u>FK5</u> 183	<u>JP11</u> 959	SBC7 200	

SBC9 291

Stellar Evolution

- Where the star was, what it did there
- Where the star will be going, what it will do
- Testing Nuclear Theory
- The Astrophysical Laboratory
- We are made of stardust

HR Diagram

Single Star Evolution

Mass Dictates Evolution*

^{*} Composition changes evolution too, but it's a second-order contribution

Substellar Objects

Image Courtesy of HST Gallery PRC95-45 STSCI OPO

No Hydrogen Fusion

- Powered by gravitational collapse, Deuterium (²H or ²D) burning
- Masses below 0.085 M_o(~75 M_{jupiter})
- \bullet T_{eff} \approx 900 K
- Sometimes Show Stellar-like activity

Low mass stellar evolution

Evolutionary Tracks, adapted from Iben (1967)

- M_{\circ} M_o < 0.3 M_o remains on MS for more than T_{hubble}
- M_o > 0.3 M_o H in core exhausted, climbs up RGB
- H burning in shell, star swells. He ash falls on core
- He core becomes degenerate
- M < 0.4 M_o core degeneracy never lifted, becomes He white dwarf

Intermediate mass stars

- 0.4 < M_o < 6-10 M_oDegeneracy is lifted (He flash)
- Core expands, H-burning damped, star contracts
- Star moves into horizontal branch He burning produces Cand O- ash
- Shell He and H burning causes star to swell, move back towards RGB
- During AGB phase star undergoes mass loss
- Fusion ceases, star contracts maintaining Luminosity
- Evolves into planetary nebulae whose core becomes a WD

Intermediate-mass phase: Post-AGB

- Low to intermediate initial mass
- (1 8 M_o) transitioning between AGB and PN
- Not very well understood
- Fairly short lived (102 103 yr)
- Often shrouded in dust with silicate or carbonate features in the IR
- Look like Supergiant in many respects
- Detailed Spectral Analysis needed, will reveal s-process elements
- Several Unstable Pulsation Modes Evolution of a 2M_o star (Herwig, 2005)

Evolution of a 2M_o star (Herwig, 2005)

Massive Stars

- \bullet M > 10 M $_{\circ}$
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless
- Envelope cannot respond fast enough.

Dominant fuel	$T_{\mathbf{c}}$	Duration	Important products
Neon Oxygen			

Stellar Timescales (Hansen, 2004)

Massive Stars

- \bullet M > 10 M_o
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless
- Envelope cannot respond fast enough.
- Stars Become Highly Layered

Layering in Highly Evolved Stars (Wikimedia Commons)

Massive Stars

- \bullet M > 10 M_o
- Burn Nuclear Fuel Quickly
- HR Diagram Becomes Mostly Useless
- Envelope cannot respond fast enough.
- Stars Become Highly Layered
- Core Collapse

Image Credit: Hester (2005) via. HST

Roche Lobes

Image Credit: Hansen (2004)

- Roche Lobes
- Roche Lobe overflow, mass transfer

- Roche Lobes
- Roche Lobe overflow, mass transfer
- Common Envelope Phase

Common Envelope (Iben, 1991)

- Roche Lobes
- Roche Lobe overflow, mass transfer
- Common Envelope Phase
- Observable Eclipses

Other Stellar Evolution Concerns

Single Stars

- Stellar Composition
- Rotation
- Mixing / Convection

Binary Stars

- Non-spherical cores
- Tidal interactions
 - Including tidal heating

Now on to Epsilon Aurigae!

Where to find eps Aur

About eps Aur

- What is eps Aur?
 - Single line spectroscopic eclipsing binary star system
 - Single Line: only one star visible spectroscopically
 - Eclipsing: One object passes in front of the other
- What makes it so interesting?

...

The Discovery

• 1821: High Minister Fritsch of Quedlinburg, Germany "I saw the star epsilon Aurigae in the she-goat of the Charioteer [i.e. Auriga] frequently [to be] so dim compared with zeta and eta that it was barely to be recognized. Has [any]one [else] as yet observed this?"

1846 Eclipse of eps Aur; Gussow (1936)

In the early 1900s

82 Years Later...

- 1821-1936
 - 41 observers monitored eps Aur
- 1903 (Ludendorff)
 - 27-year period determined
- 1912 (Russel)
 - Analytical Model for binary star eclipses developed.
- 1915 (Shapley)
 - Found binary star theory didn't work on eps Aur.

A Paradoxical Problem

- Binary Star Theory said companion was equally massive to the observable F-star, but yet unseen! Questions:
 - What is the companion?
 - Why is it so under-luminous?
 - Is it detectable at all?
 - How do these eclipses happen/work?

- 1912: Ludendorff
 - A swarm of meteorites, 10-100 um in diameter.
- 1937: Struve et al.
 - A large semitransparent infrared orbited by an Ftype supergiant.
- 1938: Schoenberg et al.
 - A super-cool star that forms solid particles during convection

- 1954: Kopal
 - While refuting Struve's model, he claims it could just be a flat, semi-transparent ring of material composed of small 10-100 um particles.
- 1965: Huang
 - The first analytical model supporting a disk-like object as the cause of the eclipse.

Image Credit: Dan Weeks

- 1971: Cameron
 - Agreed with Huang, but supposed a black hole was lurking at the center of the disk.
- 1971: Wilson
 - Simulated the eclipse on a computer and criticized the Huang model. Claimed the disk was physically thin, but optically thick.

- 1985: Eggleton et al.
 - Proposed that the disk obscured two stars, rather than just one.
- 1985: Schmidtke
 - Explored the possibility that a gravitational lens could cause the mideclipse brightening.

Image Credit: M. Carroll, R. Stencel (2008)

- 1986: Kemp
 - Obtained polarimetry during the 1983 eclipse, argued that the disk is inclined.
- 1989: Henson
 - F-star might be undergoing non-radial pulsation.
- 1990: Ferluga
 - Tweaked the Huang model, proposed the disk consisted of a series of rings.

Current Model of eps Aur

Two Competing Theories

High Mass Scenario

Low Mass Scenario

- F-star
 - Type: Superigant
 - M₀ ~ 15
- Star + Disk
 - Young Stellar Object

- F-star
 - Type: Post-AGB
 - $M_{\circ} \sim 4$
- star + Disk
 - Main Sequence ~B5V
 - Disk is debris from mass overflow

But how to we tell which is right?

Distance and the Orbit

- Determine the Distance
 - Hipparcos: 653 +/- 551 pc
 - Astrometry + RV: 580 +/- 20 pc
 - Supergiant Stellar Evolution: 725 pc

Problems Abound...

- Hipparcos Error Bars 2-3x bigger than field stars
- Astrometric Orbit doesn't match up with other data

Possible Cause/Solutions:

- Spots on F-star corrupt Hipparcos solution.
 Characterize spots.
- Incorrect PM used for astrometric ref. stars.
 Redo solution.

1938 Photograph of eps Aur and field stars. Sproul Observatory.

Spectra, Looking for Signatures

- If F-star is post-AGB it should have spectral signatures.
 - Enhancements of s-process elements
 - Y, Zr, Ba
 - Elevation of ¹³C
- Any signs of the companion?

IR Spectroscopy

CHARA Interferometer

- Located on Mount Wilson, CA
- Six 1m Telescopes
- Maximum baseline 331m = 0.5 mas resolution in H-band

Basics of Interferometry

Interferometers don't take pictures, they get fringes.

eps Aur Interferometric Images

Epsilon Aurigae Eclipse (CHARA-MIRC)

eps Aur Interferometric Images

From Kloppenborg (2011), Scale in 2009-11 image = 0.5 mas

First view of the Disk

Citizen Sky

- Citizen Science Effort focusing on epsilon Auriage
- Pro-Am collaboration through teams
- Blogs, Chats, Forums
- Photometry with DSLR cameras!!
- For more information:
 - http://www.citizensky.org