Imaging the transiting disk in the epsilon Aurigae system

In collaboration with:

Robert Stencel, John Monnier, Gail Schaefer, Ming Zhao, Fabien Baron, Xiao Che, Rob Parks, Hal McAlister, Theo ten Brummelaar, Chris Farrington, PJ Sallave-Goldfinger, Judit Sturmann, Laszlo Sturmann Ettore Pedretti, Nathalie Thureau, Nils Turner, Sean M. Carroll

Funding:

NSF DRL-0840188, AST 10-16678, William Hershel Womble Estate

Brian Kloppenborg

Max-Planck Institute for Radio Astronomy

Bonn, Germany

OI Imaging Workshop University of Michigan 2012-08-08

Background: Brian Thieme

Outline

- What is epsilon Aurigae?
- Open research questions
- Enter interferometry
 - Examples of data
 - Images
 - Modeling (Bayesian)
- Results
- Conclusion

The First (?) Discovery

Den Stern in der Ziege des Fuhrmanns sehe ich oft gegen ζ und η so schwach, dafs er kaum zu erkennen war. Hat man dies schon beobachtet?

-Fritsch (1824)

Knowledge as of 1903

- Photometric Monitoring:
 - System dims by ~50% every 9890 days (27.1 years) (Ludendorff, 1903), stays faint for ~2-years
- Spectroscopic Monitoring:
 - Epsilon Aurigae is a single line spectroscopic binary
- Dimming thought to be due to an eclipse.
- System composition
 - Visible component is F0Ia
 - Other component: unknown

Background on eps Aur

- 1912: Ludendorff
 - A swarm of meteorites, 10-100 um in diameter.
- 1937: Struve et al.
 - A large semitransparent infrared orbited by an Ftype supergiant.
- 1938: Schoenberg et al.
 - A super-cool star that forms solid particles during convection

Background on eps Aur

- 1965: Huang
 - The first analytical model supporting a disk-like object as the cause of the eclipse.

- 1986: Kemp
 - Obtained polarimetry during the 1983 eclipse, argued that the disk is inclined.

From the 1983 eclipse

- 1989: Henson
 - F-star might be undergoing non-radial pulsation.

- 1990: Ferluga
 - Tweaked the Huang model, proposed the disk consisted of a series of rings.

1983-2012: Long-term photometry

2009 Model of Eps Aur

DARK DISK

TO ARK DISK

STAR?

SUPERGIANT STAR

"ULTRAVIOLET" DISK

VISIBLE

VISIBLE

ULTRAVIOLET

TIME

Kemp (1983)

S&T Illustration by Casey Reed

Some of the Research Questions

- The system:
 - What are the fundamental parameters (mass, radius, luminosity) of the components in the system?
 - What is it's evolutionary state?
- The eclipse:
 - What causes it?
 - Orbital parameters?
 - Fractional coverage?
- The eclipsing body:
 - Composition (gas, dust, debris?)
 - Dynamic stability (inside: one or two stars?)
- The F-star:
 - What causes the out-of-eclipse variations?

2009-2012 Eclipse Photometry

CHARA Observations

CHARA, 2008 Sept. (pre-eclipse)

CHARA, 2009 Nov. (eclipse ingress)

CHARA, 2009 Nov. (eclipse ingress)

CHARA, 2011 Nov. (post-eclipse)

Enter OI Imaging

Epsilon Aurigae Eclipse (CHARA-MIRC)

OI Imaging Shows

- The eclipsing object is disk-like
- Polarization-predicted impact parameter might be wrong
- Potential surface features

Model independent images

Modeling: SIMTOI

- Simulation and Modeling Tool for Optical Interferometry
 - Generates interferometric observables from geometrical models
 - Models are fully 3D and time-dependent
 - First interferometric modeling tool to use GPU acceleration (via. my OpenCL Interferometry Library)
 - Multiple minimization engines
 - Bayesian model selection
 - Find it on GitHub

(e) Disk B (f) Disk B

Caveats of rendered modeling

- Detriments of rendered modeling
 - Artificial minimia:
 - Mixing discrete (i.e. pixels) with continuous probability can lead to jump discontinuities in the posterior probability distribution
 - Easily fixed by using minimization engine that is aware of discrete probability on some variables.
 - Longer execution times:
 - A DFT or NUFFT is $O(n^2)$ or $O(m + n \log(n))$
 - Partially alleviated by GPU computing.
- Benefits:
 - Geometry really considered, obscuration super easy.
 - Modeling complex objects (i.e. eps Aur, non-radial pulsation, eclipsing binaries, spots) is easier.
 - Implementing a new model is as simple as rendering it.

Interferometric Data: Summary

- PTI
 - 24 obs. → 21 epochs
 - 1997-10 to 2008-11
- CHARA (MIRC, CLIMB)
 - 39 nights → 16 epochs
 - 2008-09 to 2011-11
- NOI:
 - 35 Nights → 14 Epochs
 - 2006-02 to 2010-04
- Images:
 - Star is round (spots?)
 - Southern half eclipsed
 - Disk theory likely correct

- Bayesian Modeling:
 - F-star:
 - LDD ~ 2.27 mas
 - LCD ~ 0.66
 - Disk:
 - Height ~ 0.75 mas
 - Diam. ~ 9.9 mas
 - Edge decay ~ 1.9
 - System:
 - Total semi-major axis $\alpha \sim 36.2$ mas
 - $\Omega \sim 298 \deg$.
- Noteworthy:
 - F-star shrinking by ~ 1% / year?

Conclusion

- Interferometric images:
 - Show that a disk is responsible for the eclipse
 - Give us an idea of what we need to model
- Interferometric model fitting:
 - Provide estimates of
 - Stellar parameters (diameter, darkening coefficient)
 - Disk parameters (diameter, height, edge opacity, flaring)
 - Orbital parameters (alpha_T, Omega, inc)