Interferometric results from the epsilon Aurigae eclipse

(Its more than just images!)

Max-Planck-Institut für Radioastronomie Brian Kloppenborg (bkloppen@mpifr.de) 2013-07-30 – AAS Giants of Eclipse Meeting

Collaborators

- DU: R. Stencel
- UM: J. D. Monnier, X. Che
- CHARA/GSU: G. Schaefer, F. Baron, T. ten Brummelaar, C. Farrington, R. Parks, PJ Goldfinger, J. Sturman, L. Sturman, N. Turner, H. McAlister
- NPOI: C. Tycner, B. Zavala, D. Hutter
- Penn. State: M. Zhao
- U. St. Andrews: E. Pedretti, N. Thureau

Overview

- Optical Interferometry (OI) Data Products
- OI image reconstruction
- Data sources for eps Aur project
- Artifact assessment and eps Aur images
- System models and results
- Applied statistical methods

Optical interferometry data products

- UV points
- Visibility squared $|V|^2$
- Triple product (the bispectra) $T_{ijk} = V_{ij}V_{jk}V_{ki}$ $= |V_{ij}V_{jk}V_{ki}|e^{i(\phi_{ij}+\phi_{jk}+\phi_{ki})}$

Triple Amplitude

Closure Phase

 $\phi_{123} = \phi_{12} + \phi_{\text{atm}} + \phi_{23} + (-\phi_{\text{atm}}) + \phi_{31}$

- Differential quantities (spectrally dispersed data)
 - Visibilities
 - Phase
- Closure Amplitudes
- Data are saved as OIFITS files

OI imaging is an ill-posed model fitting problem

- Model fitting
 - Well-posed problem N(data) > N(parameters)
 - Small number of parameters (often of different nature)
 - Constraints on parameters to keep them physical
- Image reconstruction
 - This is still model-fitting...
 - High number of identical parameters
 - e.g. pixels, wavelets, etc.
 - III-posed problem N(data) << N(pixels)
 - Need some prior information needed to regularize the solution

Bayes theorem applied to imaging

N(data) << N(pixels)... need more constraints:

Positivity:
$$\forall n, i_n \geq 0$$

Normalization to unity: $\sum_n i_n = 1$

Slide content from Aperture Synthesis Imaging. Baron (2012)

Which regularization function?

 $J(i) = \chi^2(i) + \mu R(i)$

Images from Renard (2012)

What value for the multiplier?

What regularization weight value?

Images from Renard (2012)

Eps Aur Interferometry

Data from multiple interferometers CHARA-MIRC, CHARA-CLIMB, NPOI, PTI

UV Coverage

What can we trust in the images?

Artifacts abound

Likely Artifacts:

- Bright Spots along equator
- Bright spot at North Pole
- Dark alias in northern hemisphere
- Scalloped Edge of disk

Not Artifacts:

Southern Pole

Undecided:

Straight Edges on F-star

Five of 14 model-independent images

Ingress (CHARA-MIRC)

2009-11 2009-12 2010-02

Mid-eclipse (CHARA-MIRC) 2010-08

Egress (CHARA-CLIMB) 2010-04

How do we model the disk?

Huang 1965 "brick"

Kemp 1986 "inclined brick"

New software: liboi and SIMTOI

- OpenCL Interferometry Library (liboi)
 - GPU computing library for OI
 - Image + OIFITS \rightarrow Simulated observations
 - Can perform ~280 (image \rightarrow data \rightarrow chi2r) / second
 - About 150x faster than the same algorithms on a CPU
- SImulation and Modeling Tool for Optical Interferometry (SIMTOI)
 - Models rendered using OpenGL (computer graphics)
 - Environment is fully 3D, time-dependent, and includes orbits!
 - Has several minimization engines
 - Callable via. scripting languages
 - Uses liboi as a backend for fast computations

The photometry hints at the orbital parameters... if you have a disk model

Photometry is Ic band, from AAVSO contributors

Our models were inspired by resolved images of proplyds

Image of Orion protoplanetary disks from Ricci et al. 2008 and Miotello et al. 2012

Best-fit symmetric disk models

Epsilon Aurigae symmetric disk models

The disk is not symmetric

Predicted eclipse photometry from symmetric disk models

Bootstrapping provides more realistic uncertainties

- Model: Hestroffer LDD applied to sphere
 - Statistics appear to follow Cauchy distributions
 - Both parameters show (slight) skewness

Conclusions

- OI image reconstruction is tricky
 - A careful analysis of image artifacts is needed
- Eps Aur:
 - OI has significantly constrained the orbit
 - The disk is **asymmetric** and is now quantified
 - Mid-eclipse brightening is **not** due to a central clearing in the disk
 - Bootstrapped uncertainties are reasonable
 - Publication coming very soon!

Brian Kloppenborg (bkloppen@mpifr.de)

Interferometric results from the epsilon Aurigae eclipse

(Its more than just images!)

Max-Planck-Institut für Radioastronomie